
c3dp Documentation
Release 0.2.0

Fahima Islam

Nov 03, 2021

CONTENTS:

1 c3dp 1
1.1 Automated design of 3D printed collimator optimized for high pressure diffraction 1
1.2 Features . 1
1.3 Usage . 2

2 Installation 3
2.1 Stable release . 3
2.2 From sources . 3

3 Usage 5
3.1 Tutorials and Examples . 5

4 Modules 7
4.1 Peak_detection : Detecting local maxima and minima in a signal . 7
4.2 atomicPercentage_from_weightPercentage : Calculating the atomic percentage from weight percentage 7
4.3 cad : converting .xml file to .scad file . 8
4.4 convert2nxs : converting Numpy (.npy) file to Events Nexus (.nxs) file 8
4.5 from_d_toTOF : conversion to time of flight from d-spacing . 8
4.6 gauge_volume : Creating the gauge volume by the collimator . 8
4.7 normalization_by_area : normalizing the curve by integrated area 11
4.8 sampleassembly_program : Creating the template for sample assembly 12
4.9 scattering_kernal_program : Creating the template for scattering kernel 12
4.10 section : properties of different sections of the collimator . 13

5 Contributing 17
5.1 Types of Contributions . 17
5.2 Get Started! . 18
5.3 Pull Request Guidelines . 19
5.4 Tips . 19
5.5 Deploying . 19

6 Credits 21
6.1 Development Lead . 21
6.2 Contributors . 21

7 History 23
7.1 0.1.0 (2019-04-22) . 23

8 Indices and tables 25

Python Module Index 27

i

Index 29

ii

CHAPTER

ONE

C3DP

1.1 Automated design of 3D printed collimator optimized for high
pressure diffraction

1.2 Features

description of the simulation

• Simulation of the the diffractometer

• Simulation of the pressure cells

• Optimization of the collimator for the given pressure cell

• Produced the .stl or .scad file of the collimator to be 3D printed

• Produced the gauge volume of the collimator

1

https://anaconda.org/fi0/c3dp
https://anaconda.org/fi0/c3dp
https://travis-ci.org/fahima-islam/c3dp
https://pypi.python.org/pypi/c3dp
https://c3dp.readthedocs.io/en/latest/?badge=latest

c3dp Documentation, Release 0.2.0

1.3 Usage

docs/image/with_python.png

2 Chapter 1. c3dp

https://github.com/Fahima-Islam/c3dp/blob/documentation/notebooks/collimator_optimization_for_clampcell_Example.ipynb

CHAPTER

TWO

INSTALLATION

2.1 Stable release

To install c3dp, run this command in your terminal:

$ conda install -c fi0 c3dp (recommended)
$ pip install c3dp

This is the preferred method to install c3dp, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for c3dp can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/fahima-islam/c3dp

Or download the tarball:

$ curl -OL https://github.com/fahima-islam/c3dp/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

3

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/fahima-islam/c3dp
https://github.com/fahima-islam/c3dp/tarball/master

c3dp Documentation, Release 0.2.0

4 Chapter 2. Installation

CHAPTER

THREE

USAGE

To use c3dp in a project:

import c3dp

3.1 Tutorials and Examples

optimization of neutron scattering instrument

5

https://github.com/Fahima-Islam/c3dp/blob/documentation/notebooks/collimator_optimization_for_clampcell_Example.ipynb

c3dp Documentation, Release 0.2.0

6 Chapter 3. Usage

CHAPTER

FOUR

MODULES

4.1 Peak_detection : Detecting local maxima and minima in a signal

c3dp.analysis.Peak_Detection.peakdetect(y_axis, x_axis=None, lookahead=200, delta=0)
function for detecting local maxima and minima in a signal. Discovers peaks by searching for values which are
surrounded by lower or larger values for maxima and minima respectively

keyword arguments: y_axis – A list containing the signal over which to find peaks

x_axis – A x-axis whose values correspond to the y_axis list and is used in the return to specify the position
of the peaks. If omitted an index of the y_axis is used. (default: None)

lookahead – distance to look ahead from a peak candidate to determine if it is the actual peak (default:
200) ‘(samples / period) / f’ where ‘4 >= f >= 1.25’ might be a good value

delta – this specifies a minimum difference between a peak and the following points, before a peak may be
considered a peak. Useful to hinder the function from picking up false peaks towards to end of the signal.
To work well delta should be set to delta >= RMSnoise * 5. (default: 0)

When omitted delta function causes a 20% decrease in speed. When used Correctly it can double
the speed of the function

return: two lists [max_peaks, min_peaks] containing the positive and negative peaks respectively. Each
cell of the lists contains a tuple of: (position, peak_value) to get the average peak value do:
np.mean(max_peaks, 0)[1] on the results to unpack one of the lists into x, y coordinates do: x, y =
zip(*max_peaks)

4.2 atomicPercentage_from_weightPercentage : Calculating the
atomic percentage from weight percentage

c3dp.instruments.atomicPercentage_from_weightPencentage.atomic_percentage_from_weight_percentage(weight_percentage={},
atomic_weight={})

calculating atomic percentage from weight percentage

Parameters

• weight_percentage (ordered dictionary) – elements as keys and their weight percentage as
values in a component

• atomic_weight (ordered dictionary) – elements as keys and their atomic weights as values
in a component

Returns atomic percentage – elements as keys and their atomic percentage as values in a component

7

c3dp Documentation, Release 0.2.0

Return type ordered dictionary

4.3 cad : converting .xml file to .scad file

4.4 convert2nxs : converting Numpy (.npy) file to Events Nexus (.nxs)
file

4.5 from_d_toTOF : conversion to time of flight from d-spacing

c3dp.reduction.from_d_toTOF.tof_from_d(d, angle, l1=14.699, l2=0.3, l3=0.5, xA=0.0, yA=0.0, zA=0.0)

unit conversion from d spacing to time of flight

d [float] d spacing in Angstrom.

angle [float] scattering angles in degrees.

l1 [float] from source to guide exit distance in meters

l2 [float] from guide to sample distance in meters

l3 [float] from sample to detector distance in meters

xA [float] pixel position along x-axis with respect to detector center in meters

yA [float] pixel position along y-axis with respect to detector center in meters

zA [float] pixel position along z-axis with respect to detector center in meters

Returns

Return type time of flight in seconds

4.6 gauge_volume : Creating the gauge volume by the collimator

c3dp.gaugevol.gauge_volume.angle2span(Verticle_distance, angle)

Parameters

• Verticle_distance

• angle

c3dp.gaugevol.gauge_volume.gauge_volume(square_theta_phy_sample, square_theta_phy_detector,
sample_points_x_y)

Calculate the non-zero gauge volume for different positions of the sample.

Parameters

8 Chapter 4. Modules

c3dp Documentation, Release 0.2.0

• square_theta_phy_sample (tuple) – the tuple of theta, phi of the four points of the collimator squared opening at
sample side where each element of the tuple is the array of theta/phi of four points of the
collimator for a particular point of the sample. e.g. (array([theta1, theta2, theta3, theta4]),
array([phi1, phi2, phi3, phi4]))

square_theta_phy_detector [tuple] the tuple of theta, phi of the four points of the collima-
tor squared opening at detector side where each element of the tuple is the array of theta/phi
of four points of the collimator for a particular point of the sample. e.g. (array([theta1,
theta2, theta3, theta4]), array([phi1, phi2, phi3, phi4]))

• sample_points_x_y (ndarray) – array of two coordinates of the sample (x,y)

Returns

• the tuple of positions in the sample (array([y,z])) (where the gaauge volume is non-zero) ,
corresponding gauge volume (list)

• where the position of the sample is an array, i.e. (array([x,y]))

c3dp.gaugevol.gauge_volume.make_cylindrical_surface(channel_start_from_sample_center, angle,
height, length_misalignment_offset=0.0,
height_misalignment_offset=0.0)

create a cylinder which axis is along the vertical axis (z- axis)

Parameters

• channel_start_from_sample_center (float) – Longitudinal coordinate of the collimator (ra-
dius of the cylinder).

• height (float) – Height of the collimator channel (height of the cylinder).

• angle (degree) – angular size of collimator channel (curvature of the cylinder)

• length_misalignment_offset (float) – misalignment offset along the cylinder radius

• height_misalignment_offset (float) – misalignment offset along the cylinder axis

Returns

Return type the list of the four points of the collimator channel’s cylindrical opening

c3dp.gaugevol.gauge_volume.make_square(x, size, length_misalignment_offset=0.0,
misalignment_offset=0.0)

create a square with the longitudinal coordinate and the height/width of the collimator .

Parameters

• x (float) – Longitudinal coordinate of the collimator.

• size (float) – Height or width of the collimator (collimator is square).

• length_misalignment_offset (float) – misalignment offset along the cylinder radius

• misalignment_offset (float) – misalignment offset along the vertical and transversal axis

Returns

Return type the list of the four points of the collimator squared opening

4.6. gauge_volume : Creating the gauge volume by the collimator 9

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

c3dp Documentation, Release 0.2.0

c3dp.gaugevol.gauge_volume.making_plot(sample_points_x_y_nonZero, gauge_volume, y_upper_imit,
y_lower_limit, sample_height=10, sample_width=5.0,
min_color=None, max_color=None)

Saved the contour of the gauge volume in different positions of the sample in “Figure directory”.

Parameters

• sample_points_x_y_nonZero (ndarray) – array of two coordinates of the sample (x,y)
points where gauge volume is non-zero

• gauge_volume (list) – list of the non zero gauge volumes of different positions of the sample

• y_upper_imit (float) – the upper limit of Y-axis for the plotting view

• y_lower_imit (float) – the lower limit of Y-axis for the plotting view

c3dp.gaugevol.gauge_volume.non_center_channels(channel_at_center)

create a square with the longitudinal coordinate and the height/width of the collimator .

Parameters

• x (float) – Longitudinal coordinate of the collimator.

• size (float) – Height or width of the collimator (collimator is square).

Returns

Return type the list of the four points of the collimator squared opening

c3dp.gaugevol.gauge_volume.rotation_around_x_axis(vector_point, rotation_angle)

create a vector point after rotating a vector around x axis in 3D space anticlockwise

vector_point [list]

list of the three coordinates of a point

rotation_angle [degree] angle to rotate the vector.

the array of the rotated vector consisting of three coordinates of the vector

c3dp.gaugevol.gauge_volume.rotation_around_y_axis(vector_point, rotation_angle)

create a vector point after rotating a vector around y axis in 3D space anticlockwise

vector_point [list]

list of the three coordinates of a point

rotation_angle [degree] angle to rotate the vector.

the array of the rotated vector consisting of three coordinates of the vector

c3dp.gaugevol.gauge_volume.rotation_around_z_axis(vector_point, rotation_angle)

10 Chapter 4. Modules

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

c3dp Documentation, Release 0.2.0

create a vector point after rotating a vector around z axis in 3D space anticlockwise

vector_point [list]

list of the three coordinates of a point

rotation_angle [degree] angle to rotate the vector.

the array of the rotated vector consisting of three coordinates of the vector

c3dp.gaugevol.gauge_volume.span2angle(distance, distance_fr_sample)

Parameters

• distance

• distance_fr_sample

c3dp.gaugevol.gauge_volume.theta_phi(Collimator_square, sample_point)

Calculate the spherical coordinate(theta and phi) of the four points of the square collimator from the
sample.

Parameters

• Collimator_square (list) – List of the four points of the collimator openning cross-section .

• sample_point (ndarray) – array of three coordinates of the sample (x,y,z).T

Returns

• the tuple of theta, phi of the four points of the collimator squared opening

• where each element of the tuple is the array of theta/phi of four points of the

• collimator for a particular point of the sample

4.7 normalization_by_area : normalizing the curve by integrated area

c3dp.analysis.normalization_by_area.area_under_curve(y, dx, method=None)
Calculate the area under the curve

Parameters y (array_like) – Input array to integrate

dx [scalar] The spacing between sample points

Returns area – Integrated area

Return type float

c3dp.analysis.normalization_by_area.normalization(y, area)
normalizing the curve by integrated area

Parameters y (array_like) – Input array to integrate

area: float Integrated area

Returns normalized_data – normalized curve by area

Return type array_like

4.7. normalization_by_area : normalizing the curve by integrated area 11

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float

c3dp Documentation, Release 0.2.0

4.8 sampleassembly_program : Creating the template for sample as-
sembly

c3dp.instruments.sampleassembly_program.makeSAXML(sampleassembly_fileName, pathTosave,
scatterers={('collimator', 'shapeColl',
'coll_geometry', 'B4C', 'B4C.cif', 'cif'),
('inner-sleeve', 'shapeCu', 'inner-sleeve-geom', 'Cu',
'Cu.xyz', 'xyz'), ('outer-body', 'shapeAl',
'outer-body-geom', 'Al', 'Al.xyz', 'xyz'), ('sample',
'shapeSample', 'sample_geom', 'Si', 'Si.xyz', 'xyz')})

creating the sample assembly file on which mcvine simulation will run

Parameters

• sampleassembly_fileName (string) – file name of the sampleassembly

• pathTosave (string) – the path where the sample assembly file will be saved

• scatterers (set) – the set of scatterer information : scatterer name, shape name, shape file
name, chemical formula, structure file path, structure file extension

4.9 scattering_kernal_program : Creating the template for scattering
kernel

c3dp.instruments.scatkernel.scattering_kernal_program.makeSKXML(kernel_type,
path_ToSave_ScatteringKernel,
scatterer_type_name,
scatterer=None, absorption=0,
scattering=1, transmission=3,
Dd_over_d=1e-05,
DebyeWaller_factor=1, E=None,
S_Q_E=None, Qmin=None,
Qmax=None)

making scattering kernel xml file

kernel_type: string if the ‘elastic or inelastic’ kernel to specify

scatterer: string peaks location of the scatterer

path_ToSave_ScatteringKernel [string] path where the scattering kernel file would be saved

scatterer_type_name: string name of the scatterer type (sample/ cell)

absorption: int weight for absorption

transmission: int weight for transmission

Dd_over_d: float d spacing resolution in Angstrom

DebyeWaller_factor: int Debye Waller factor

12 Chapter 4. Modules

c3dp Documentation, Release 0.2.0

4.10 section : properties of different sections of the collimator

class c3dp.instruments.collimator.section.CollimatorSection(thickness, sample_distance, aperture)
Bases: object

thickness: float Distance from upstream and downstream collimator faces, in mili-meters

sample_distance: float Distance from the sample to the middle of the section, in mili-meters

aperture: float Angle subtended by the section to the sample, in degrees

blade_blade_angle_distances(blade_angles)
In the boundary between two collimator sections, the interior blades of each collimator section may overlap
on top of each other. Here we look at the upstream face of the collimator section, that is the boundary
between this section and the collimator section immediately nearer to the sample. For each interior blade
of the collimator section, we calculate the angle difference to each of the blades of the neighbor collimator
section, retaining only the minimum of these differences. In the end, we obtain an angle difference between
each blade of the collimator section and the set of blades from the neighbor collimator section.

Parameters blade_angles (numpy.ndarray) – Blade angle positions for the neighbor collimator
section

Returns Angle differences, in degrees

Return type numpy.ndarray

blade_blade_distances(blade_angles)
In the boundary between two collimator sections, the interior blades of each collimator section may overlap
on top of each other. Here we look at the upstream face of the collimator section, that is the boundary
between this section and the collimator section immediately nearer to the sample. For each interior blade
of the collimator section, we calculate the distance to each of the blades of the neighbor collimator section,
retaining only the minimum of these distances. In the end, we obtain a distance between each blade of the
collimator section and the set of blades from the neighbor collimator section.

Parameters blade_angles (numpy.ndarray) – Blade angle positions for the neighbor collimator
section

Returns Distances between neighboring blades, in mili-meters

Return type numpy.ndarray

chanel_thickness(n_blades=None)
Chanel thickness given a number of interior blades. Blade thickness is also taken into account.

Calculations using the upstream face of the collimator section.

Parameters n_blades (int) – Number of interior blades. If none, the number of blade angles is
used

Returns

Return type float

minimal_blade_blade_distance(blade_angles)
Minimal distance between the set of interior blades of the collimator section and the set of interior blades
of the collimator section immediately nearer to the sample.

Parameters blade_angles (numpy.ndarray) – Blade angle positions for the neighbor collimator
section

Returns Minimal distance, in mili-meters

Return type float

4.10. section : properties of different sections of the collimator 13

https://docs.python.org/3/library/functions.html#object
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

c3dp Documentation, Release 0.2.0

property n_blades

n_blades_from_thickness(channel_thickness)
Number of interior blades given a channel thickness. Blade thickness is also taken into account.

Calculations using the upstream face of the collimator section

Parameters channel_thickness (float)

Returns

Return type int

property sample_upstream_distance
Distance from sample to upstream collimator face

set_blade_angles(n_blades)
Angle positions of the blades. Origin of angles at the top surface.

Parameters n_blades (int) – number of interior blades

Returns

Return type numpy.ndarray

class c3dp.instruments.collimator.section.Triad(blades, d, widths)
Bases: tuple

blades
Alias for field number 0

d
Alias for field number 1

widths
Alias for field number 2

c3dp.instruments.collimator.section.blade_configurations(upstream_distance, collimator_thickness,
aperture, minimum_channel_width=3.0,
blade_thickness=1.0, blade_gap=1.1)

List of blade configurations. Each configuratio avoids blade overlap between adjacent collimator sections.

Parameters

• upstream_distance (float) – Distance from sample to the upstream face of the collimator.

• thickness (float) – Distance of each collimator section. Assumed all three same thickness.

• aperture (float) – Collimator aperture angle, in degrees

• minimum_channel_width (float) – Units in mili meters

• blade_thickness (float) – Units in mili meters

• blade_gap (float) – Minimal distance between blades from adjacent sections

Returns List of Triad objects, that can later be filtered and sorted

Return type list

c3dp.instruments.collimator.section.sort_filter_confs(confs, min_n_blades=None,
max_channel_width=None,
sort_by_total_blades=False,
sort_max_section_blades=None)

Sort or filter according to different criteria :Parameters: * confs (list) – List of Triad objects

14 Chapter 4. Modules

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list

c3dp Documentation, Release 0.2.0

• min_n_blades (int) – Discard Triads having one collimator section with a number of blades smaller than
this number.

• max_channel_width (float) – Discard Triads having one collimator section with a channel width bigger
than this value.

• sort_by_total_blades (Bool) – Sort by decreasing total number of blades in the collimator.

• sort_max_section_blades (str) – One of ‘first’, ‘middle’, ‘last’. Sort list of Triads according to decreasing
number of blades in either the ‘first’, ‘middle’, or ‘last’ collimator section.

Returns sorted or filtered list of Triad objects

Return type list

c3dp.instruments.collimator.section.valid_blade_pair_configurations(upstream_section,
max_upstream_blades,
downstream_section,
max_downstream_blades,
tolerance=1.0)

List of pairs, each pair containing a number of interior blades for the upstream collimator section and a number
of interior blades for the downstream collimator section. For each valid pair, it is guaranteed that no blade from
the upstream collimator is closer than the tolerance distance to any blade from the downstream collimator. Also
for each pair, the minimal blade-to-blade distance is reported

Parameters

• upstream_section (CollimatorSection) – Upstream collimator section

• max_upstream_blades (int) – Maximum number of interior blades for the upstream colli-
mator section

• downstream_section (CollimatorSection) – Downstream collimator section

• max_downstream_blades (int) – Maximum number of interior blades for the downstream
collimator section

• tolerance (float) – Minimal blade-to-blade distance between adjacent collimator sections.

Returns Tuple containing a list of valid pairs and a list of minimal distances

Return type tuple

c3dp.instruments.collimator.section.valid_blade_triad_configurations(sections, max_blades,
tolerance=1.0)

List of triads, each triad containing number of interior blades for each collimator sections. For each triad, it is
guaranteed that no blade from a collimator section is closer than the tolerance distance to any blade from the
adjacent collimator(s).

Parameters

• sections (list) – List of collimator sections, beginning with the section closer to the sample

• max_blades (list) – Maximum number of interior blades per collimator section.

• tolerance (float) – Minimal blade-to-blade distance between adjacent collimator sections.

Returns a list of Triad objects

Return type list

4.10. section : properties of different sections of the collimator 15

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list

c3dp Documentation, Release 0.2.0

16 Chapter 4. Modules

CHAPTER

FIVE

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

5.1 Types of Contributions

5.1.1 Report Bugs

Report bugs at https://github.com/fahima-islam/c3dp/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

5.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants to
implement it.

5.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

5.1.4 Write Documentation

c3dp could always use more documentation, whether as part of the official c3dp docs, in docstrings, or even on the web
in blog posts, articles, and such.

17

https://github.com/fahima-islam/c3dp/issues

c3dp Documentation, Release 0.2.0

5.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/fahima-islam/c3dp/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

5.2 Get Started!

Ready to contribute? Here’s how to set up c3dp for local development.

1. Fork the c3dp repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/c3dp.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv c3dp
$ cd c3dp/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 c3dp tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

18 Chapter 5. Contributing

https://github.com/fahima-islam/c3dp/issues

c3dp Documentation, Release 0.2.0

5.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with
a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check https://travis-ci.org/
fahima-islam/c3dp/pull_requests and make sure that the tests pass for all supported Python versions.

5.4 Tips

To run a subset of tests:

$ py.test tests.test_c3dp

5.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

5.3. Pull Request Guidelines 19

https://travis-ci.org/fahima-islam/c3dp/pull_requests
https://travis-ci.org/fahima-islam/c3dp/pull_requests

c3dp Documentation, Release 0.2.0

20 Chapter 5. Contributing

CHAPTER

SIX

CREDITS

6.1 Development Lead

• Fahima islam <ffiqnf.2017@gmail.com>

6.2 Contributors

None yet. Why not be the first?

21

mailto:ffiqnf.2017@gmail.com

c3dp Documentation, Release 0.2.0

22 Chapter 6. Credits

CHAPTER

SEVEN

HISTORY

7.1 0.1.0 (2019-04-22)

• First release on PyPI.

The Python ecosystem is an ideal environment for developing full-circle applications for merging collimator design,
experimental planning and optimization, and 3D printing for neutron scattering instruments. We present a Python
package, c3dp, that uses numpy, scipy, h5py, shapely, and Matplotlib to design, simulate, optimize and visualize a col-
limator’s performance quickly, accurately, and finally convert the optimized configuration straight to a format ready for
3D printing for diamond anvil or clamp pressure cells used in neutron diffraction experiments on the SNAP beamline.
The package includes Monte Carlo ray tracing of the SNAP instrument, the collimator geometry, and simulates the neu-
tron interaction with the collimator and the optimization of the collimator geometry to produce the best configuration.
A differential evolution algorithm from the SciPy library was used for optimization with the objective of minimizing
the simulated background, and a Jupyter notebook is used to integrate each of the steps of the package into a design
and optimization work flow.

23

c3dp Documentation, Release 0.2.0

24 Chapter 7. History

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

25

c3dp Documentation, Release 0.2.0

26 Chapter 8. Indices and tables

PYTHON MODULE INDEX

c
c3dp.analysis.normalization_by_area, 11
c3dp.gaugevol.gauge_volume, 8
c3dp.instruments.atomicPercentage_from_weightPencentage,

7
c3dp.instruments.collimator.section, 13
c3dp.instruments.sampleassembly_program, 12
c3dp.instruments.scatkernel.scattering_kernal_program,

12
c3dp.reduction.from_d_toTOF, 8

27

c3dp Documentation, Release 0.2.0

28 Python Module Index

INDEX

A
angle2span() (in module

c3dp.gaugevol.gauge_volume), 8
area_under_curve() (in module

c3dp.analysis.normalization_by_area), 11
atomic_percentage_from_weight_percentage()

(in module c3dp.instruments.atomicPercentage_from_weightPencentage),
7

B
blade_blade_angle_distances()

(c3dp.instruments.collimator.section.CollimatorSection
method), 13

blade_blade_distances()
(c3dp.instruments.collimator.section.CollimatorSection
method), 13

blade_configurations() (in module
c3dp.instruments.collimator.section), 14

blades (c3dp.instruments.collimator.section.Triad
attribute), 14

C
c3dp.analysis.normalization_by_area

module, 11
c3dp.analysis.Peak_Detection
module, 7

c3dp.gaugevol.gauge_volume
module, 8

c3dp.instruments.atomicPercentage_from_weightPencentage
module, 7

c3dp.instruments.collimator.section
module, 13

c3dp.instruments.sampleassembly_program
module, 12

c3dp.instruments.scatkernel.scattering_kernal_program
module, 12

c3dp.reduction.from_d_toTOF
module, 8

chanel_thickness() (c3dp.instruments.collimator.section.CollimatorSection
method), 13

CollimatorSection (class in
c3dp.instruments.collimator.section), 13

D
d (c3dp.instruments.collimator.section.Triad attribute),

14

G
gauge_volume() (in module

c3dp.gaugevol.gauge_volume), 8

M
make_cylindrical_surface() (in module

c3dp.gaugevol.gauge_volume), 9
make_square() (in module

c3dp.gaugevol.gauge_volume), 9
makeSAXML() (in module

c3dp.instruments.sampleassembly_program),
12

makeSKXML() (in module
c3dp.instruments.scatkernel.scattering_kernal_program),
12

making_plot() (in module
c3dp.gaugevol.gauge_volume), 9

minimal_blade_blade_distance()
(c3dp.instruments.collimator.section.CollimatorSection
method), 13

module
c3dp.analysis.normalization_by_area, 11
c3dp.analysis.Peak_Detection, 7
c3dp.gaugevol.gauge_volume, 8
c3dp.instruments.atomicPercentage_from_weightPencentage,

7
c3dp.instruments.collimator.section, 13
c3dp.instruments.sampleassembly_program,

12
c3dp.instruments.scatkernel.scattering_kernal_program,

12
c3dp.reduction.from_d_toTOF, 8

N
n_blades (c3dp.instruments.collimator.section.CollimatorSection

property), 13

29

c3dp Documentation, Release 0.2.0

n_blades_from_thickness()
(c3dp.instruments.collimator.section.CollimatorSection
method), 14

non_center_channels() (in module
c3dp.gaugevol.gauge_volume), 10

normalization() (in module
c3dp.analysis.normalization_by_area), 11

P
peakdetect() (in module

c3dp.analysis.Peak_Detection), 7

R
rotation_around_x_axis() (in module

c3dp.gaugevol.gauge_volume), 10
rotation_around_y_axis() (in module

c3dp.gaugevol.gauge_volume), 10
rotation_around_z_axis() (in module

c3dp.gaugevol.gauge_volume), 10

S
sample_upstream_distance

(c3dp.instruments.collimator.section.CollimatorSection
property), 14

set_blade_angles() (c3dp.instruments.collimator.section.CollimatorSection
method), 14

sort_filter_confs() (in module
c3dp.instruments.collimator.section), 14

span2angle() (in module
c3dp.gaugevol.gauge_volume), 11

T
theta_phi() (in module c3dp.gaugevol.gauge_volume),

11
tof_from_d() (in module

c3dp.reduction.from_d_toTOF), 8
Triad (class in c3dp.instruments.collimator.section), 14

V
valid_blade_pair_configurations() (in module

c3dp.instruments.collimator.section), 15
valid_blade_triad_configurations() (in module

c3dp.instruments.collimator.section), 15

W
widths (c3dp.instruments.collimator.section.Triad

attribute), 14

30 Index

	c3dp
	Automated design of 3D printed collimator optimized for high pressure diffraction
	Features
	Usage

	Installation
	Stable release
	From sources

	Usage
	Tutorials and Examples

	Modules
	Peak_detection : Detecting local maxima and minima in a signal
	atomicPercentage_from_weightPercentage : Calculating the atomic percentage from weight percentage
	cad : converting .xml file to .scad file
	convert2nxs : converting Numpy (.npy) file to Events Nexus (.nxs) file
	from_d_toTOF : conversion to time of flight from d-spacing
	gauge_volume : Creating the gauge volume by the collimator
	normalization_by_area : normalizing the curve by integrated area
	sampleassembly_program : Creating the template for sample assembly
	scattering_kernal_program : Creating the template for scattering kernel
	section : properties of different sections of the collimator

	Contributing
	Types of Contributions
	Report Bugs
	Fix Bugs
	Implement Features
	Write Documentation
	Submit Feedback

	Get Started!
	Pull Request Guidelines
	Tips
	Deploying

	Credits
	Development Lead
	Contributors

	History
	0.1.0 (2019-04-22)

	Indices and tables
	Python Module Index
	Index

