

Welcome to c3dp’s documentation!

Contents:

	c3dp
	Automated design of 3D printed collimator optimized for high pressure diffraction

	Features

	Usage

	Installation
	Stable release

	From sources

	Usage
	Tutorials and Examples

	Modules
	Peak_detection : Detecting local maxima and minima in a signal

	atomicPercentage_from_weightPercentage : Calculating the atomic percentage from weight percentage

	cad : converting .xml file to .scad file

	convert2nxs : converting Numpy (.npy) file to Events Nexus (.nxs) file

	from_d_toTOF : conversion to time of flight from d-spacing

	gauge_volume : Creating the gauge volume by the collimator

	normalization_by_area : normalizing the curve by integrated area

	sampleassembly_program : Creating the template for sample assembly

	scattering_kernal_program : Creating the template for scattering kernel

	section : properties of different sections of the collimator

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2019-04-22)

The Python ecosystem is an ideal environment for developing full-circle applications for merging
collimator design, experimental planning and optimization, and 3D printing for neutron scattering
instruments. We present a Python package, c3dp, that uses numpy, scipy, h5py, shapely, and
Matplotlib to design, simulate, optimize and visualize a collimator’s performance quickly,
accurately, and finally convert the optimized configuration straight to a format ready for 3D
printing for diamond anvil or clamp pressure cells used in neutron diffraction experiments on the
SNAP beamline. The package includes Monte Carlo ray tracing of the SNAP instrument, the
collimator geometry, and simulates the neutron interaction with the collimator and the
optimization of the collimator geometry to produce the best configuration. A differential evolution
algorithm from the SciPy library was used for optimization with the objective of minimizing the
simulated background, and a Jupyter notebook is used to integrate each of the steps of the
package into a design and optimization work flow.

Indices and tables

	Index

	Module Index

	Search Page

c3dp

[image: _images/version.svg]
 [https://anaconda.org/fi0/c3dp][image: _images/platforms.svg]
 [https://anaconda.org/fi0/c3dp][image: _images/c3dp.svg]
 [https://travis-ci.org/fahima-islam/c3dp][image: _images/c3dp1.svg]
 [https://pypi.python.org/pypi/c3dp][image: Documentation Status]
 [https://c3dp.readthedocs.io/en/latest/?badge=latest]
Automated design of 3D printed collimator optimized for high pressure diffraction

Features

description of the simulation

	Simulation of the the diffractometer

	Simulation of the pressure cells

	Optimization of the collimator for the given pressure cell

	Produced the .stl or .scad file of the collimator to be 3D printed

	Produced the gauge volume of the collimator

[image: _images/flow.png]

Usage

[image: docs/image/with_python.png]
 [https://github.com/Fahima-Islam/c3dp/blob/documentation/notebooks/collimator_optimization_for_clampcell_Example.ipynb]

Installation

Stable release

To install c3dp, run this command in your terminal:

$ conda install -c fi0 c3dp (recommended)
$ pip install c3dp

This is the preferred method to install c3dp, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for c3dp can be downloaded from the Github repo [https://github.com/fahima-islam/c3dp].

You can either clone the public repository:

$ git clone git://github.com/fahima-islam/c3dp

Or download the tarball [https://github.com/fahima-islam/c3dp/tarball/master]:

$ curl -OL https://github.com/fahima-islam/c3dp/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use c3dp in a project:

import c3dp

Tutorials and Examples

optimization of neutron scattering instrument [image: c3dp] [https://github.com/Fahima-Islam/c3dp/blob/documentation/notebooks/collimator_optimization_for_clampcell_Example.ipynb]

Modules

	Peak_detection : Detecting local maxima and minima in a signal

	atomicPercentage_from_weightPercentage : Calculating the atomic percentage from weight percentage

	cad : converting .xml file to .scad file

	convert2nxs : converting Numpy (.npy) file to Events Nexus (.nxs) file

	from_d_toTOF : conversion to time of flight from d-spacing

	gauge_volume : Creating the gauge volume by the collimator

	normalization_by_area : normalizing the curve by integrated area

	sampleassembly_program : Creating the template for sample assembly

	scattering_kernal_program : Creating the template for scattering kernel

	section : properties of different sections of the collimator

Peak_detection : Detecting local maxima and minima in a signal

	
c3dp.analysis.Peak_Detection.peakdetect(y_axis, x_axis=None, lookahead=200, delta=0)

	function for detecting local maxima and minima in a signal.
Discovers peaks by searching for values which are surrounded by lower
or larger values for maxima and minima respectively

keyword arguments:
y_axis – A list containing the signal over which to find peaks

	x_axis – A x-axis whose values correspond to the y_axis list and is used
	in the return to specify the position of the peaks. If omitted an
index of the y_axis is used.
(default: None)

	lookahead – distance to look ahead from a peak candidate to determine if
	it is the actual peak
(default: 200)
‘(samples / period) / f’ where ‘4 >= f >= 1.25’ might be a good value

	delta – this specifies a minimum difference between a peak and
	the following points, before a peak may be considered a peak. Useful
to hinder the function from picking up false peaks towards to end of
the signal. To work well delta should be set to delta >= RMSnoise * 5.
(default: 0)

When omitted delta function causes a 20% decrease in speed.
When used Correctly it can double the speed of the function

	return: two lists [max_peaks, min_peaks] containing the positive and
	negative peaks respectively. Each cell of the lists contains a tuple
of: (position, peak_value)
to get the average peak value do: np.mean(max_peaks, 0)[1] on the
results to unpack one of the lists into x, y coordinates do:
x, y = zip(*max_peaks)

atomicPercentage_from_weightPercentage : Calculating the atomic percentage from weight percentage

	
c3dp.instruments.atomicPercentage_from_weightPencentage.atomic_percentage_from_weight_percentage(weight_percentage={}, atomic_weight={})

	calculating atomic percentage from weight percentage

	Parameters

	
	weight_percentage (ordered dictionary) – elements as keys and their weight percentage as values in a component

	atomic_weight (ordered dictionary) – elements as keys and their atomic weights as values in a component

	Returns

	atomic percentage – elements as keys and their atomic percentage as values in a component

	Return type

	ordered dictionary

cad : converting .xml file to .scad file

convert2nxs : converting Numpy (.npy) file to Events Nexus (.nxs) file

from_d_toTOF : conversion to time of flight from d-spacing

	
c3dp.reduction.from_d_toTOF.tof_from_d(d, angle, l1=14.699, l2=0.3, l3=0.5, xA=0.0, yA=0.0, zA=0.0)

	
unit conversion from d spacing to time of flight

	dfloat
	d spacing in Angstrom.

	anglefloat
	scattering angles in degrees.

	l1float
	from source to guide exit distance in meters

	l2float
	from guide to sample distance in meters

	l3float
	from sample to detector distance in meters

	xAfloat
	pixel position along x-axis with respect to detector center in meters

	yAfloat
	pixel position along y-axis with respect to detector center in meters

	zAfloat
	pixel position along z-axis with respect to detector center in meters

	Returns

	

	Return type

	time of flight in seconds

gauge_volume : Creating the gauge volume by the collimator

	
c3dp.gaugevol.gauge_volume.angle2span(Verticle_distance, angle)

	
	Parameters

	
	Verticle_distance

	angle

	
c3dp.gaugevol.gauge_volume.gauge_volume(square_theta_phy_sample, square_theta_phy_detector, sample_points_x_y)

	
Calculate the non-zero gauge volume for different positions of the sample.

	Parameters

	
	
	square_theta_phy_sample (tuple) – the tuple of theta, phi of the four points of the collimator squared opening at
	sample side where each element of the tuple is the array of theta/phi of four points of the
collimator for a particular point of the sample.
e.g. (array([theta1, theta2, theta3, theta4]), array([phi1, phi2, phi3, phi4]))

	square_theta_phy_detectortuple
	the tuple of theta, phi of the four points of the collimator squared opening at
detector side where each element of the tuple is the array of theta/phi of four points of the
collimator for a particular point of the sample.
e.g. (array([theta1, theta2, theta3, theta4]), array([phi1, phi2, phi3, phi4]))

	sample_points_x_y (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – array of two coordinates of the sample (x,y)

	Returns

	
	the tuple of positions in the sample (array([y,z])) (where the gaauge volume is non-zero) , corresponding gauge volume (list)

	where the position of the sample is an array, i.e. (array([x,y]))

	
c3dp.gaugevol.gauge_volume.make_cylindrical_surface(channel_start_from_sample_center, angle, height, length_misalignment_offset=0.0, height_misalignment_offset=0.0)

	
create a cylinder which axis is along the vertical axis (z- axis)

	Parameters

	
	channel_start_from_sample_center (float) – Longitudinal coordinate of the collimator (radius of the cylinder).

	height (float) – Height of the collimator channel (height of the cylinder).

	angle (degree) – angular size of collimator channel (curvature of the cylinder)

	length_misalignment_offset (float) – misalignment offset along the cylinder radius

	height_misalignment_offset (float) – misalignment offset along the cylinder axis

	Returns

	

	Return type

	the list of the four points of the collimator channel’s cylindrical opening

	
c3dp.gaugevol.gauge_volume.make_square(x, size, length_misalignment_offset=0.0, misalignment_offset=0.0)

	
create a square with the longitudinal coordinate and the height/width of the collimator .

	Parameters

	
	x (float) – Longitudinal coordinate of the collimator.

	size (float) – Height or width of the collimator (collimator is square).

	length_misalignment_offset (float) – misalignment offset along the cylinder radius

	misalignment_offset (float) – misalignment offset along the vertical and transversal axis

	Returns

	

	Return type

	the list of the four points of the collimator squared opening

	
c3dp.gaugevol.gauge_volume.making_plot(sample_points_x_y_nonZero, gauge_volume, y_upper_imit, y_lower_limit, sample_height=10, sample_width=5.0, min_color=None, max_color=None)

	
Saved the contour of the gauge volume in different positions of the sample in “Figure directory”.

	Parameters

	
	sample_points_x_y_nonZero (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – array of two coordinates of the sample (x,y) points where gauge volume is non-zero

	gauge_volume (list) – list of the non zero gauge volumes of different positions of the sample

	y_upper_imit (float) – the upper limit of Y-axis for the plotting view

	y_lower_imit (float) – the lower limit of Y-axis for the plotting view

	
c3dp.gaugevol.gauge_volume.non_center_channels(channel_at_center)

	
create a square with the longitudinal coordinate and the height/width of the collimator .

	Parameters

	
	x (float) – Longitudinal coordinate of the collimator.

	size (float) – Height or width of the collimator (collimator is square).

	Returns

	

	Return type

	the list of the four points of the collimator squared opening

	
c3dp.gaugevol.gauge_volume.rotation_around_x_axis(vector_point, rotation_angle)

	

create a vector point after rotating a vector around x axis in 3D space anticlockwise

	vector_pointlist
	
list of the three coordinates of a point

	rotation_angledegree
	angle to rotate the vector.

the array of the rotated vector consisting of three coordinates of the vector

	
c3dp.gaugevol.gauge_volume.rotation_around_y_axis(vector_point, rotation_angle)

	

create a vector point after rotating a vector around y axis in 3D space anticlockwise

	vector_pointlist
	
list of the three coordinates of a point

	rotation_angledegree
	angle to rotate the vector.

the array of the rotated vector consisting of three coordinates of the vector

	
c3dp.gaugevol.gauge_volume.rotation_around_z_axis(vector_point, rotation_angle)

	

create a vector point after rotating a vector around z axis in 3D space anticlockwise

	vector_pointlist
	
list of the three coordinates of a point

	rotation_angledegree
	angle to rotate the vector.

the array of the rotated vector consisting of three coordinates of the vector

	
c3dp.gaugevol.gauge_volume.span2angle(distance, distance_fr_sample)

	
	Parameters

	
	distance

	distance_fr_sample

	
c3dp.gaugevol.gauge_volume.theta_phi(Collimator_square, sample_point)

	
Calculate the spherical coordinate(theta and phi) of the
four points of the square collimator from the sample.

	Parameters

	
	Collimator_square (list) – List of the four points of the collimator openning cross-section .

	sample_point (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – array of three coordinates of the sample (x,y,z).T

	Returns

	
	the tuple of theta, phi of the four points of the collimator squared opening

	where each element of the tuple is the array of theta/phi of four points of the

	collimator for a particular point of the sample

normalization_by_area : normalizing the curve by integrated area

	
c3dp.analysis.normalization_by_area.area_under_curve(y, dx, method=None)

	Calculate the area under the curve

	Parameters

	y (array_like) – Input array to integrate

	dxscalar
	The spacing between sample points

	Returns

	area – Integrated area

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
c3dp.analysis.normalization_by_area.normalization(y, area)

	normalizing the curve by integrated area

	Parameters

	y (array_like) – Input array to integrate

	area: float
	Integrated area

	Returns

	normalized_data – normalized curve by area

	Return type

	array_like

sampleassembly_program : Creating the template for sample assembly

	
c3dp.instruments.sampleassembly_program.makeSAXML(sampleassembly_fileName, pathTosave, scatterers={('collimator', 'shapeColl', 'coll_geometry', 'B4C', 'B4C.cif', 'cif'), ('inner-sleeve', 'shapeCu', 'inner-sleeve-geom', 'Cu', 'Cu.xyz', 'xyz'), ('outer-body', 'shapeAl', 'outer-body-geom', 'Al', 'Al.xyz', 'xyz'), ('sample', 'shapeSample', 'sample_geom', 'Si', 'Si.xyz', 'xyz')})

	
creating the sample assembly file on which mcvine simulation will run

	Parameters

	
	sampleassembly_fileName (string) – file name of the sampleassembly

	pathTosave (string) – the path where the sample assembly file will be saved

	scatterers (set) – the set of scatterer information : scatterer name, shape name, shape file name, chemical formula,
structure file path, structure file extension

scattering_kernal_program : Creating the template for scattering kernel

	
c3dp.instruments.scatkernel.scattering_kernal_program.makeSKXML(kernel_type, path_ToSave_ScatteringKernel, scatterer_type_name, scatterer=None, absorption=0, scattering=1, transmission=3, Dd_over_d=1e-05, DebyeWaller_factor=1, E=None, S_Q_E=None, Qmin=None, Qmax=None)

	making scattering kernel xml file

	kernel_type: string
	if the ‘elastic or inelastic’ kernel to specify

	scatterer: string
	peaks location of the scatterer

	path_ToSave_ScatteringKernelstring
	path where the scattering kernel file would be saved

	scatterer_type_name: string
	name of the scatterer type (sample/ cell)

	absorption: int
	weight for absorption

	transmission: int
	weight for transmission

	Dd_over_d: float
	d spacing resolution in Angstrom

	DebyeWaller_factor: int
	Debye Waller factor

section : properties of different sections of the collimator

	
class c3dp.instruments.collimator.section.CollimatorSection(thickness, sample_distance, aperture)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	thickness: float
	Distance from upstream and downstream collimator faces, in mili-meters

	sample_distance: float
	Distance from the sample to the middle of the section, in mili-meters

	aperture: float
	Angle subtended by the section to the sample, in degrees

	
blade_blade_angle_distances(blade_angles)

	In the boundary between two collimator sections, the interior
blades of each collimator section may overlap on top of each other.
Here we look at the upstream face of the collimator section, that is
the boundary between this section and the collimator section
immediately nearer to the sample.
For each interior blade of the collimator section,
we calculate the angle difference to each of the blades of the
neighbor collimator section, retaining only the minimum of these
differences.
In the end, we obtain an angle difference between each blade of
the collimator section and the set of blades from the neighbor
collimator section.

	Parameters

	blade_angles (numpy.ndarray) – Blade angle positions for the neighbor collimator section

	Returns

	Angle differences, in degrees

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
blade_blade_distances(blade_angles)

	In the boundary between two collimator sections, the interior
blades of each collimator section may overlap on top of each other.
Here we look at the upstream face of the collimator section, that is
the boundary between this section and the collimator section
immediately nearer to the sample.
For each interior blade of the collimator section,
we calculate the distance to each of the blades of the
neighbor collimator section, retaining only the minimum of these
distances.
In the end, we obtain a distance between each blade of
the collimator section and the set of blades from the neighbor
collimator section.

	Parameters

	blade_angles (numpy.ndarray) – Blade angle positions for the neighbor collimator section

	Returns

	Distances between neighboring blades, in mili-meters

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
chanel_thickness(n_blades=None)

	Chanel thickness given a number of interior blades. Blade
thickness is also taken into account.

Calculations using the upstream face of the collimator section.

	Parameters

	n_blades (int) – Number of interior blades. If none, the number of blade angles
is used

	Returns

	

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
minimal_blade_blade_distance(blade_angles)

	Minimal distance between the set of interior blades of the
collimator section and the set of interior blades of the
collimator section immediately nearer to the sample.

	Parameters

	blade_angles (numpy.ndarray) – Blade angle positions for the neighbor collimator section

	Returns

	Minimal distance, in mili-meters

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
property n_blades

	

	
n_blades_from_thickness(channel_thickness)

	Number of interior blades given a channel thickness. Blade
thickness is also taken into account.

Calculations using the upstream face of the collimator section

	Parameters

	channel_thickness (float)

	Returns

	

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property sample_upstream_distance

	Distance from sample to upstream collimator face

	
set_blade_angles(n_blades)

	Angle positions of the blades. Origin of angles at the top surface.

	Parameters

	n_blades (int) – number of interior blades

	Returns

	

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
class c3dp.instruments.collimator.section.Triad(blades, d, widths)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
blades

	Alias for field number 0

	
d

	Alias for field number 1

	
widths

	Alias for field number 2

	
c3dp.instruments.collimator.section.blade_configurations(upstream_distance, collimator_thickness, aperture, minimum_channel_width=3.0, blade_thickness=1.0, blade_gap=1.1)

	List of blade configurations. Each configuratio avoids blade overlap
between adjacent collimator sections.

	Parameters

	
	upstream_distance (float) – Distance from sample to the upstream face of the collimator.

	thickness (float) – Distance of each collimator section. Assumed all three same thickness.

	aperture (float) – Collimator aperture angle, in degrees

	minimum_channel_width (float) – Units in mili meters

	blade_thickness (float) – Units in mili meters

	blade_gap (float) – Minimal distance between blades from adjacent sections

	Returns

	List of Triad objects, that can later be filtered and sorted

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
c3dp.instruments.collimator.section.sort_filter_confs(confs, min_n_blades=None, max_channel_width=None, sort_by_total_blades=False, sort_max_section_blades=None)

	Sort or filter according to different criteria
:Parameters: * confs (list) – List of Triad objects

	min_n_blades (int) – Discard Triads having one collimator section with a number of blades
smaller than this number.

	max_channel_width (float) – Discard Triads having one collimator section with a channel width
bigger than this value.

	sort_by_total_blades (Bool) – Sort by decreasing total number of blades in the collimator.

	sort_max_section_blades (str) – One of ‘first’, ‘middle’, ‘last’. Sort list of Triads according to
decreasing number of blades in either the ‘first’, ‘middle’, or
‘last’ collimator section.

	Returns

	sorted or filtered list of Triad objects

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
c3dp.instruments.collimator.section.valid_blade_pair_configurations(upstream_section, max_upstream_blades, downstream_section, max_downstream_blades, tolerance=1.0)

	List of pairs, each pair containing a number of interior blades
for the upstream collimator section and a number of interior blades
for the downstream collimator section.
For each valid pair, it is guaranteed that no blade from the upstream
collimator is closer than the tolerance distance to any blade from the
downstream collimator.
Also for each pair, the minimal blade-to-blade distance is reported

	Parameters

	
	upstream_section (CollimatorSection) – Upstream collimator section

	max_upstream_blades (int) – Maximum number of interior blades for the upstream collimator section

	downstream_section (CollimatorSection) – Downstream collimator section

	max_downstream_blades (int) – Maximum number of interior blades for the downstream collimator section

	tolerance (float) – Minimal blade-to-blade distance between adjacent collimator sections.

	Returns

	Tuple containing a list of valid pairs and a list of minimal distances

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
c3dp.instruments.collimator.section.valid_blade_triad_configurations(sections, max_blades, tolerance=1.0)

	List of triads, each triad containing number of interior blades for
each collimator sections.
For each triad, it is guaranteed that no blade from a collimator
section is closer than the tolerance distance to any blade from the
adjacent collimator(s).

	Parameters

	
	sections (list) – List of collimator sections, beginning with the section closer to
the sample

	max_blades (list) – Maximum number of interior blades per collimator section.

	tolerance (float) – Minimal blade-to-blade distance between adjacent collimator sections.

	Returns

	a list of Triad objects

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/fahima-islam/c3dp/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

c3dp could always use more documentation, whether as part of the
official c3dp docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/fahima-islam/c3dp/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up c3dp for local development.

	Fork the c3dp repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/c3dp.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv c3dp
$ cd c3dp/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 c3dp tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check
https://travis-ci.org/fahima-islam/c3dp/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_c3dp

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Fahima islam <ffiqnf.2017@gmail.com>

Contributors

None yet. Why not be the first?

History

0.1.0 (2019-04-22)

	First release on PyPI.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 c3dp	

 	
 	
 c3dp.analysis.normalization_by_area	

 	
 	
 c3dp.analysis.Peak_Detection	

 	
 	
 c3dp.gaugevol.gauge_volume	

 	
 	
 c3dp.instruments.atomicPercentage_from_weightPencentage	

 	
 	
 c3dp.instruments.collimator.section	

 	
 	
 c3dp.instruments.sampleassembly_program	

 	
 	
 c3dp.instruments.scatkernel.scattering_kernal_program	

 	
 	
 c3dp.reduction.from_d_toTOF	

Index

 A
 | B
 | C
 | D
 | G
 | M
 | N
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	angle2span() (in module c3dp.gaugevol.gauge_volume)

 	
 	area_under_curve() (in module c3dp.analysis.normalization_by_area), [1]

 	atomic_percentage_from_weight_percentage() (in module c3dp.instruments.atomicPercentage_from_weightPencentage)

B

 	
 	blade_blade_angle_distances() (c3dp.instruments.collimator.section.CollimatorSection method)

 	blade_blade_distances() (c3dp.instruments.collimator.section.CollimatorSection method)

 	
 	blade_configurations() (in module c3dp.instruments.collimator.section)

 	blades (c3dp.instruments.collimator.section.Triad attribute)

C

 	
 	
 c3dp.analysis.normalization_by_area

 	module, [1]

 	
 c3dp.analysis.Peak_Detection

 	module, [1]

 	
 c3dp.gaugevol.gauge_volume

 	module

 	
 c3dp.instruments.atomicPercentage_from_weightPencentage

 	module

 	
 c3dp.instruments.collimator.section

 	module

 	
 	
 c3dp.instruments.sampleassembly_program

 	module

 	
 c3dp.instruments.scatkernel.scattering_kernal_program

 	module

 	
 c3dp.reduction.from_d_toTOF

 	module

 	chanel_thickness() (c3dp.instruments.collimator.section.CollimatorSection method)

 	CollimatorSection (class in c3dp.instruments.collimator.section)

D

 	
 	d (c3dp.instruments.collimator.section.Triad attribute)

G

 	
 	gauge_volume() (in module c3dp.gaugevol.gauge_volume)

M

 	
 	make_cylindrical_surface() (in module c3dp.gaugevol.gauge_volume)

 	make_square() (in module c3dp.gaugevol.gauge_volume)

 	makeSAXML() (in module c3dp.instruments.sampleassembly_program)

 	makeSKXML() (in module c3dp.instruments.scatkernel.scattering_kernal_program)

 	making_plot() (in module c3dp.gaugevol.gauge_volume)

 	minimal_blade_blade_distance() (c3dp.instruments.collimator.section.CollimatorSection method)

 	
 module

 	c3dp.analysis.normalization_by_area, [1]

 	c3dp.analysis.Peak_Detection, [1]

 	c3dp.gaugevol.gauge_volume

 	c3dp.instruments.atomicPercentage_from_weightPencentage

 	c3dp.instruments.collimator.section

 	c3dp.instruments.sampleassembly_program

 	c3dp.instruments.scatkernel.scattering_kernal_program

 	c3dp.reduction.from_d_toTOF

N

 	
 	n_blades (c3dp.instruments.collimator.section.CollimatorSection property)

 	n_blades_from_thickness() (c3dp.instruments.collimator.section.CollimatorSection method)

 	
 	non_center_channels() (in module c3dp.gaugevol.gauge_volume)

 	normalization() (in module c3dp.analysis.normalization_by_area), [1]

P

 	
 	peakdetect() (in module c3dp.analysis.Peak_Detection), [1]

R

 	
 	rotation_around_x_axis() (in module c3dp.gaugevol.gauge_volume)

 	
 	rotation_around_y_axis() (in module c3dp.gaugevol.gauge_volume)

 	rotation_around_z_axis() (in module c3dp.gaugevol.gauge_volume)

S

 	
 	sample_upstream_distance (c3dp.instruments.collimator.section.CollimatorSection property)

 	set_blade_angles() (c3dp.instruments.collimator.section.CollimatorSection method)

 	
 	sort_filter_confs() (in module c3dp.instruments.collimator.section)

 	span2angle() (in module c3dp.gaugevol.gauge_volume)

T

 	
 	theta_phi() (in module c3dp.gaugevol.gauge_volume)

 	
 	tof_from_d() (in module c3dp.reduction.from_d_toTOF)

 	Triad (class in c3dp.instruments.collimator.section)

V

 	
 	valid_blade_pair_configurations() (in module c3dp.instruments.collimator.section)

 	
 	valid_blade_triad_configurations() (in module c3dp.instruments.collimator.section)

W

 	
 	widths (c3dp.instruments.collimator.section.Triad attribute)

Peak_detection : Detecting local maxima and minima in a signal

	
c3dp.analysis.Peak_Detection.peakdetect(y_axis, x_axis=None, lookahead=200, delta=0)

	function for detecting local maxima and minima in a signal.
Discovers peaks by searching for values which are surrounded by lower
or larger values for maxima and minima respectively

keyword arguments:
y_axis – A list containing the signal over which to find peaks

	x_axis – A x-axis whose values correspond to the y_axis list and is used
	in the return to specify the position of the peaks. If omitted an
index of the y_axis is used.
(default: None)

	lookahead – distance to look ahead from a peak candidate to determine if
	it is the actual peak
(default: 200)
‘(samples / period) / f’ where ‘4 >= f >= 1.25’ might be a good value

	delta – this specifies a minimum difference between a peak and
	the following points, before a peak may be considered a peak. Useful
to hinder the function from picking up false peaks towards to end of
the signal. To work well delta should be set to delta >= RMSnoise * 5.
(default: 0)

When omitted delta function causes a 20% decrease in speed.
When used Correctly it can double the speed of the function

	return: two lists [max_peaks, min_peaks] containing the positive and
	negative peaks respectively. Each cell of the lists contains a tuple
of: (position, peak_value)
to get the average peak value do: np.mean(max_peaks, 0)[1] on the
results to unpack one of the lists into x, y coordinates do:
x, y = zip(*max_peaks)

normalization_by_area : normalizing the curve by integrated area

	
c3dp.analysis.normalization_by_area.area_under_curve(y, dx, method=None)

	Calculate the area under the curve

	Parameters

	y (array_like) – Input array to integrate

	dxscalar
	The spacing between sample points

	Returns

	area – Integrated area

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
c3dp.analysis.normalization_by_area.normalization(y, area)

	normalizing the curve by integrated area

	Parameters

	y (array_like) – Input array to integrate

	area: float
	Integrated area

	Returns

	normalized_data – normalized curve by area

	Return type

	array_like

cad : converting .xml file to .scad file

convert2nxs : converting Numpy (.npy) file to Events Nexus (.nxs) file

 _images/flow.png
the instrument

A 4

Sample Assembly simulation
Collection of
scattering kernels

[Monte-CarIo Ray Tracing Simulation of]

Shape

¥

Collimator geometry and
Material simulation

Optimized
?

[Detector Diffracted Pattern Simulation]

¥

[Reduction to 1D Diffraction Pattern]

¥

Optimization kernel
(objective function)

(min(Xcell/ Ysample))

pptimized 3D scad geometry of collimato Gauge Volume of the
collimator

Optimized 3D stl geometry of collimator]|

_images/with_python.png
check it out —~ [Upvter
with pythonl ~ B’bweee)r/

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to c3dp’s documentation!

 		
 c3dp

 		
 Automated design of 3D printed collimator optimized for high pressure diffraction

 		
 Features

 		
 Usage

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Tutorials and Examples

 		
 Modules

 		
 Peak_detection : Detecting local maxima and minima in a signal

 		
 atomicPercentage_from_weightPercentage : Calculating the atomic percentage from weight percentage

 		
 cad : converting .xml file to .scad file

 		
 convert2nxs : converting Numpy (.npy) file to Events Nexus (.nxs) file

 		
 from_d_toTOF : conversion to time of flight from d-spacing

 		
 gauge_volume : Creating the gauge volume by the collimator

 		
 normalization_by_area : normalizing the curve by integrated area

 		
 sampleassembly_program : Creating the template for sample assembly

 		
 scattering_kernal_program : Creating the template for scattering kernel

 		
 section : properties of different sections of the collimator

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2019-04-22)

_static/plus.png

